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Lecture 07 – Strings and Lists
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Based on concepts from: http://mcsp.wartburg.edu/zelle/python/ppics2/code/
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Last Class We Covered
• One-way, two-way, and multi-way decision 

structures
– if, if-else, and if-elif-else statements

• Control structures (review)
• Conditional operators (review)
• Boolean data type (review)
• Coding algorithms using decision structures
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Any Questions from Last Time?
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Today’s Objectives
• To discuss the usage of eval() and the 

potential security concerns
• To learn about lists and what they are used for
• To better understand the string data type

– Learn how they are represented
– Learn about and use some of their built-in functions

• To be able to apply string formatting to produce 
attractive, informative program output
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About eval()
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Previous Uses of eval()

• Remember our temperature converter?

def main():
celsius = eval(input("What is the Celsius temperature? "))
fahrenheit = 9/5 * celsius + 32

print("The temperature is ", fahrenheit, 
" degrees Fahrenheit.")

main()

What does eval do?
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The Problem with eval()
• eval() interprets a string as code
• It lets a Python program run Python code 

within itself
• In our example, we use it to let Python decide 

what data type to store the input as
– If the user gives us an integer, store it as an int
– If the user gives us a decimal, store it as a float

• Using eval() is a security hole. 
http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do
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The Problem with eval()

• But if the user gives us a malicious command 
to delete files or folders, it may also run that

• If you have os imported, and you ask for 
input using eval(input()), someone 
could type malicious code like in response
– os.system('rm hw1.py')
– This would delete your hw1.py file!

http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do
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What to Do Instead?
• Instead of using eval() to cast strings…

• Use the exact type you want to cast to:
– int(input())
– float(input())

http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do
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Fixing the Temperature Converter

def main():
celsius = float(input("What is the Celsius temperature? "))
fahrenheit = 9/5 * celsius + 32

print("The temperature is ", fahrenheit, 
" degrees Fahrenheit.")

main()

Changed to a float cast
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Introduction to Lists



www.umbc.edu

Exercise: Average Three Numbers
• Read in three numbers and average them

num1 = int(input("Please enter a number: "))
num2 = int(input("Please enter a number: "))
num3 = int(input("Please enter a number: "))
print((num1 + num2 + num3) / 3)

• Easy!  But what if we want to do 100 
numbers?  Or 1000 numbers?

• Do we want to make 100 or 1000 variables?



www.umbc.edu

Using Lists
• Need an easy way to hold onto individual data 

items without needing to make lots of variables
– Making num1, num2, …, num99, num100 

is time-consuming and impractical

• Instead, we can use a list to hold our data
– A list is a data structure: something that 

holds multiple pieces of data in one structure
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Using Lists: Individual Variables
• We need an easy way to refer to each individual 

variable in our list
– Math uses subscripts (x1, x2, x3, etc.)
– Instructions use numbers (“Step 1: Combine…”)

• Programming languages use a different syntax
– x[1], x[0], instructions[1], point[i]
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Numbering in Lists
• Lists don’t start counting from 1

– They start counting from 0!
• Lists with n elements are numbered from 0 to n-1

– The list below has 5 elements, and is 
numbered from 0 to 4

0 1 2 3 4
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Properties of a List
• Heterogeneous (any data type!)
• Contiguous (all together in memory)
• Ordered (numbered from 0 to n-1)

• Have random (instant) access to any element
• Add elements using the append method
• They’re “mutable sequences of arbitrary objects”
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List Syntax
• Use [] to assign initial values (initialization)

myList = [1, 3, 5]
words  = ["Hello", "to", "you"]

• And to refer to individual elements of a list
>>> print(words[0])
Hello
>>> myList[0] = 2
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List Example: Grocery List
• You are getting ready to head to the grocery 

store to get some much needed food

• In order to organize your trip and to reduce 
the number of impulse buys, you decide to 
make a grocery list
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List Example: Grocery List
• Inputs:

– 3 items for grocery list
• Process:

– Store grocery list using list data structure
• Output:

– Grocery list
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Grocery List Code
def main():

print("Welcome to the Grocery Manager 1.0")
// initialize the value and the size of our list
grocery_list = [None]*3

grocery_list[0] = input("Please enter your first item:  ")
grocery_list[1] = input("Please enter your second item: ")
grocery_list[2] = input("Please enter your third item:  ")
print(grocery_list[0])
print(grocery_list[1])
print(grocery_list[2])

main()
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Grocery List Demonstration
• Here’s a demonstration

of what the code is doing

bash-4.1$ python groceries.py
Please enter your first item:  milk
Please enter your second item: eggs
Please enter your third item: oil
milk
eggs
oil

0 1 2

milk eggs oil

grocery_list[0] = input("Please enter ...: ")
grocery_list[1] = input("Please enter ...: ")
grocery_list[2] = input("Please enter ...: ")
print(grocery_list[0])
print(grocery_list[1])
print(grocery_list[2])
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List Example: Grocery List
• What would make this process easier?

• Loops!
– Instead of asking for each item individually, we 

could keep adding items to the list until we 
wanted to stop (or the list was “full”)

• We will learn more about loops in the next 
couple of classes
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Strings
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The String Data Type
• Text is represented in programs by 

the string data type
• A string is a sequence of characters enclosed 

within quotation marks (") or apostrophes (')
– Sometimes called double quotes or single quotes

• FUN FACT! – The most common use of 
personal computers is word processing
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String Examples
>>> str1 = "Hello"
>>> str2 = 'spam'
>>> print(str1, str2)
Hello spam
>>> type(str1)
<class 'str'>
>>> type(str2)
<class 'str'>
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Getting Strings as Input
• Using input() automatically gets a string

>>> firstName = input("Please enter your name: ")
Please enter your name: Shakira
>>> print("Hello", firstName)
Hello Shakira
>>> type(firstName)
<class 'str'>
>>> print(firstName, firstName)
Shakira Shakira
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Accessing Individual Characters
• We can access the individual characters 

in a string through indexing

• The characters in a string are numbered 
starting from the left, beginning with 0
– Does that remind you of anything?
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Syntax of Accessing Characters
• The general form is

STRING[EXPR]

• Where STRING is the name of the string 
variable and EXPR determines which 
character is selected from the string
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Example String

>>> greet = "Hello Bob"
>>> greet[0]
'H'
>>> print(greet[0], greet[2], greet[4])
H l o
>>> x = 8
>>> print(greet[x - 2])
B

0 1 2 3 4 5 6 7 8

H e l l o B o b
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Example String
0 1 2 3 4 5 6 7 8

H e l l o B o b
• In a string of n characters, the last character is at 

position n-1 since we start counting with 0
• Index from the right side using negative indexes

>>> greet[-1]
'b'
>>> greet[-3]
'B'
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Substrings and Slicing
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Substrings
• Indexing only returns a single character 

from the entire string

• We can access a substring using
a process called slicing
– Substring: a (sub)part of another string
– Slicing: we are slicing off a portion of the string
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Slicing Syntax
• The general form is

STRING[START:END]

• START and END must both be integers
– The substring begins at index START
– The substring ends before index END

• The letter at index END is not included
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Slicing Examples
0 1 2 3 4 5 6 7 8

H e l l o B o b
>>> greet[0:3]
'Hel'
>>> greet[5:9]
' Bob'
>>> greet[:5]
'Hello'
>>> greet[1:]
'ello Bob'
>>> greet[:]
'Hello Bob'
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Specifics of Slicing
• If START or END are missing, then the 

start or the end of the string are used instead

• The index of END must come after
the index of START
– What would the substring greet[1:1] be?
''

– An empty string!
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More Slicing Examples
0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[2:-3]
'llo '
>>> greet[-6:-2]
'lo B'
>>> greet[-6:6]
'lo '
>>> greet[-9:8]
'Hello Bo'

-9 -8 -7 -6 -5 -4 -3 -2 -1
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Forming New Strings - Concatenation
• We can put two or more strings together to 

form a longer string

• Concatenation “glues” two strings together
>>> "Peanut Butter" + "Jelly"
'Peanut ButterJelly'
>>> "Peanut Butter" + " & " + "Jelly"
'Peanut Butter & Jelly'
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Forming New Strings - Repetition
• Concatenating the same string together 

multiple times can be done with repetition
– Which operator would you use for this?
>>> animal = "dogs"
>>> animal*3
'dogsdogsdogs'
>>> animal*8
'dogsdogsdogsdogsdogsdogsdogsdogs'
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Practice: Spam and Eggs
>>> "spam" + "eggs"
'spameggs'
>>> "Spam" + "And" + "Eggs"
'SpamAndEggs'
>>> 3 * "spam"
'spamspamspam'
>>> "spam" * 5
'spamspamspamspamspam'
>>> (3 * "spam") + ("eggs" * 5)
'spamspamspameggseggseggseggseggs'
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Length of a String
• To get the length of a string, use len()

>>> title = "CMSC 201"
>>> len(title)
8
>>> len("Help I'm trapped in here!")
24

• Why would we need the length of a string?
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String Operators in Python
Operator Meaning

+
*

STRING[#]
STRING[#:#]
len(STRING)

for VAR in STRING Iteration

Concatenation
Repetition
Indexing
Slicing
Length

We’ll cover this next class, when we learn for loops!
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Just a Bit More on Strings
• Python has many, many ways to interact with 

strings, and we will cover them in detail soon
• For now, here are two very useful functions:

s.lower() – copy of s in all lowercase letters
s.upper() – copy of s in all uppercase letters

• Why would we need to use these?
– Remember, Python is case-sensitive!
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String Processing Examples
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Example: Creating Usernames
• Our rules for creating a username:

– First initial, first 7 characters of last name (lowercase)

# get user’s first and last names
first = input("Please enter your first name: ")
last = input("Please enter your last name:  ")

# concatenate first initial with 7 chars of last name
uname = first[0].lower() + last[:7].lower()
print("Your username is: ", uname)

Why is this 7?
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Example: Creating Usernames
>>> first = input("Please enter your first name: ")
Please enter your first name: Donna
>>> last  = input("Please enter your last name:  ")
Please enter your last name:  Rostenkowski

>>> uname = first[0] + last[:7]
>>> print("Your username is: ", uname)
Your username is DRostenk

>>> uname = first[0].lower() + last[:7].lower()
>>> print("Your username is: ", uname)
Your username is drostenk

Usernames must be lowercase!
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Example: Creating Usernames
>>> first = input("Please enter your first name: ")
Please enter your first name: Barack
>>> last  = input("Please enter your last name:  ")
Please enter your last name:  Obama

>>> uname = first[0].lower() + last[:7].lower()
>>> print("Your username is: ", uname)
Your username is bobama

• What would happen if we did last[7]?
– IndexError – but why does last[:7] work?
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Example: Printing the Months
• Given an integer (from 1 to 12) print the 

three letter abbreviation for that month

• Start by storing all the names in one big string:
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

• Use the number of the month to get the right 
“slice” of the months string
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Example: Printing the Months
• Let’s figure out the position for each month name:

months = "JanFebMarAprMayJunJulAugSepOctNovDec"
0123456789     5         5         5

Month Jan Feb Mar Apr May Jun
Num 1 2 3 4 5 6
Pos

Month Jul Aug Sep Oct Nov Dec
Num 7 8 9 10 11 12
Pos 18 21 24 27 30 33

0 3 6 9 12 15
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Example: Printing the Months
• Notice a pattern?

• To get the position, subtract 1 from the 
month’s number and multiply by 3
pos = (num-1) * 3

• Use it to get the month name from the string

Month Jan Feb Mar Apr
Num 1 2 3 4
Pos 0 3 6 9
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Example: Printing the Months
def main():

months = "JanFebMarAprMayJunJulAugSepOctNovDec"

n = int(input("Enter a month number (1-12): "))

# compute starting position of month n in months
pos = (n-1) * 3

# grab the appropriate slice from months
monthAbbrev = months[pos:pos+3]

# print the result    
print ("The month abbreviation is", monthAbbrev)

main()
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Example: Printing the Months
bash-4.1$ python months.py
Enter a month number (1-12): 1
The month abbreviation is Jan

bash-4.1$ python months.py
Enter a month number (1-12): 12
The month abbreviation is Dec

bash-4.1$ python months.py
Enter a month number (1-12): 100
The month abbreviation is

What 
happened?
months[297:300]

There’s nothing 
there in the string!
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Announcements
• Your Lab 4 is meeting normally this week!

– Make sure you attend your correct section

• Homework 3 is out
– Due by Thursday (Sept 24th) at 8:59:59 PM

• Homeworks are on Blackboard
– Weekly Agendas are also on Blackboard
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