
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 07 – Strings and Lists

Prof. Jeremy Dixon

Based on concepts from: http://mcsp.wartburg.edu/zelle/python/ppics2/code/



www.umbc.edu

Last Class We Covered
• One-way, two-way, and multi-way decision 

structures
– if, if-else, and if-elif-else statements

• Control structures (review)
• Conditional operators (review)
• Boolean data type (review)
• Coding algorithms using decision structures



www.umbc.edu

Any Questions from Last Time?



www.umbc.edu

Today’s Objectives
• To discuss the usage of eval() and the 

potential security concerns
• To learn about lists and what they are used for
• To better understand the string data type

– Learn how they are represented
– Learn about and use some of their built-in functions

• To be able to apply string formatting to produce 
attractive, informative program output



www.umbc.edu

About eval()



www.umbc.edu

Previous Uses of eval()

• Remember our temperature converter?

def main():
celsius = eval(input("What is the Celsius temperature? "))
fahrenheit = 9/5 * celsius + 32

print("The temperature is ", fahrenheit, 
" degrees Fahrenheit.")

main()

What does eval do?



www.umbc.edu

The Problem with eval()
• eval() interprets a string as code
• It lets a Python program run Python code 

within itself
• In our example, we use it to let Python decide 

what data type to store the input as
– If the user gives us an integer, store it as an int
– If the user gives us a decimal, store it as a float

• Using eval() is a security hole. 
http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do



www.umbc.edu

The Problem with eval()

• But if the user gives us a malicious command 
to delete files or folders, it may also run that

• If you have os imported, and you ask for 
input using eval(input()), someone 
could type malicious code like in response
– os.system('rm hw1.py')
– This would delete your hw1.py file!

http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do



www.umbc.edu

What to Do Instead?
• Instead of using eval() to cast strings…

• Use the exact type you want to cast to:
– int(input())
– float(input())

http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do



www.umbc.edu

Fixing the Temperature Converter

def main():
celsius = float(input("What is the Celsius temperature? "))
fahrenheit = 9/5 * celsius + 32

print("The temperature is ", fahrenheit, 
" degrees Fahrenheit.")

main()

Changed to a float cast



www.umbc.edu

Introduction to Lists



www.umbc.edu

Exercise: Average Three Numbers
• Read in three numbers and average them

num1 = int(input("Please enter a number: "))
num2 = int(input("Please enter a number: "))
num3 = int(input("Please enter a number: "))
print((num1 + num2 + num3) / 3)

• Easy!  But what if we want to do 100 
numbers?  Or 1000 numbers?

• Do we want to make 100 or 1000 variables?



www.umbc.edu

Using Lists
• Need an easy way to hold onto individual data 

items without needing to make lots of variables
– Making num1, num2, …, num99, num100 

is time-consuming and impractical

• Instead, we can use a list to hold our data
– A list is a data structure: something that 

holds multiple pieces of data in one structure



www.umbc.edu

Using Lists: Individual Variables
• We need an easy way to refer to each individual 

variable in our list
– Math uses subscripts (x1, x2, x3, etc.)
– Instructions use numbers (“Step 1: Combine…”)

• Programming languages use a different syntax
– x[1], x[0], instructions[1], point[i]



www.umbc.edu

Numbering in Lists
• Lists don’t start counting from 1

– They start counting from 0!
• Lists with n elements are numbered from 0 to n-1

– The list below has 5 elements, and is 
numbered from 0 to 4

0 1 2 3 4



www.umbc.edu

Properties of a List
• Heterogeneous (any data type!)
• Contiguous (all together in memory)
• Ordered (numbered from 0 to n-1)

• Have random (instant) access to any element
• Add elements using the append method
• They’re “mutable sequences of arbitrary objects”



www.umbc.edu

List Syntax
• Use [] to assign initial values (initialization)

myList = [1, 3, 5]
words  = ["Hello", "to", "you"]

• And to refer to individual elements of a list
>>> print(words[0])
Hello
>>> myList[0] = 2



www.umbc.edu

List Example: Grocery List
• You are getting ready to head to the grocery 

store to get some much needed food

• In order to organize your trip and to reduce 
the number of impulse buys, you decide to 
make a grocery list



www.umbc.edu

List Example: Grocery List
• Inputs:

– 3 items for grocery list
• Process:

– Store grocery list using list data structure
• Output:

– Grocery list



www.umbc.edu

Grocery List Code
def main():

print("Welcome to the Grocery Manager 1.0")
// initialize the value and the size of our list
grocery_list = [None]*3

grocery_list[0] = input("Please enter your first item:  ")
grocery_list[1] = input("Please enter your second item: ")
grocery_list[2] = input("Please enter your third item:  ")
print(grocery_list[0])
print(grocery_list[1])
print(grocery_list[2])

main()



www.umbc.edu

Grocery List Demonstration
• Here’s a demonstration

of what the code is doing

bash-4.1$ python groceries.py
Please enter your first item:  milk
Please enter your second item: eggs
Please enter your third item: oil
milk
eggs
oil

0 1 2

milk eggs oil

grocery_list[0] = input("Please enter ...: ")
grocery_list[1] = input("Please enter ...: ")
grocery_list[2] = input("Please enter ...: ")
print(grocery_list[0])
print(grocery_list[1])
print(grocery_list[2])



www.umbc.edu

List Example: Grocery List
• What would make this process easier?

• Loops!
– Instead of asking for each item individually, we 

could keep adding items to the list until we 
wanted to stop (or the list was “full”)

• We will learn more about loops in the next 
couple of classes



www.umbc.edu

Strings



www.umbc.edu

The String Data Type
• Text is represented in programs by 

the string data type
• A string is a sequence of characters enclosed 

within quotation marks (") or apostrophes (')
– Sometimes called double quotes or single quotes

• FUN FACT! – The most common use of 
personal computers is word processing



www.umbc.edu

String Examples
>>> str1 = "Hello"
>>> str2 = 'spam'
>>> print(str1, str2)
Hello spam
>>> type(str1)
<class 'str'>
>>> type(str2)
<class 'str'>



www.umbc.edu

Getting Strings as Input
• Using input() automatically gets a string

>>> firstName = input("Please enter your name: ")
Please enter your name: Shakira
>>> print("Hello", firstName)
Hello Shakira
>>> type(firstName)
<class 'str'>
>>> print(firstName, firstName)
Shakira Shakira



www.umbc.edu

Accessing Individual Characters
• We can access the individual characters 

in a string through indexing

• The characters in a string are numbered 
starting from the left, beginning with 0
– Does that remind you of anything?



www.umbc.edu

Syntax of Accessing Characters
• The general form is

STRING[EXPR]

• Where STRING is the name of the string 
variable and EXPR determines which 
character is selected from the string



www.umbc.edu

Example String

>>> greet = "Hello Bob"
>>> greet[0]
'H'
>>> print(greet[0], greet[2], greet[4])
H l o
>>> x = 8
>>> print(greet[x - 2])
B

0 1 2 3 4 5 6 7 8

H e l l o B o b



www.umbc.edu

Example String
0 1 2 3 4 5 6 7 8

H e l l o B o b
• In a string of n characters, the last character is at 

position n-1 since we start counting with 0
• Index from the right side using negative indexes

>>> greet[-1]
'b'
>>> greet[-3]
'B'



www.umbc.edu

Substrings and Slicing



www.umbc.edu

Substrings
• Indexing only returns a single character 

from the entire string

• We can access a substring using
a process called slicing
– Substring: a (sub)part of another string
– Slicing: we are slicing off a portion of the string



www.umbc.edu

Slicing Syntax
• The general form is

STRING[START:END]

• START and END must both be integers
– The substring begins at index START
– The substring ends before index END

• The letter at index END is not included



www.umbc.edu

Slicing Examples
0 1 2 3 4 5 6 7 8

H e l l o B o b
>>> greet[0:3]
'Hel'
>>> greet[5:9]
' Bob'
>>> greet[:5]
'Hello'
>>> greet[1:]
'ello Bob'
>>> greet[:]
'Hello Bob'



www.umbc.edu

Specifics of Slicing
• If START or END are missing, then the 

start or the end of the string are used instead

• The index of END must come after
the index of START
– What would the substring greet[1:1] be?
''

– An empty string!



www.umbc.edu

More Slicing Examples
0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[2:-3]
'llo '
>>> greet[-6:-2]
'lo B'
>>> greet[-6:6]
'lo '
>>> greet[-9:8]
'Hello Bo'

-9 -8 -7 -6 -5 -4 -3 -2 -1



www.umbc.edu

Forming New Strings - Concatenation
• We can put two or more strings together to 

form a longer string

• Concatenation “glues” two strings together
>>> "Peanut Butter" + "Jelly"
'Peanut ButterJelly'
>>> "Peanut Butter" + " & " + "Jelly"
'Peanut Butter & Jelly'



www.umbc.edu

Forming New Strings - Repetition
• Concatenating the same string together 

multiple times can be done with repetition
– Which operator would you use for this?
>>> animal = "dogs"
>>> animal*3
'dogsdogsdogs'
>>> animal*8
'dogsdogsdogsdogsdogsdogsdogsdogs'



www.umbc.edu

Practice: Spam and Eggs
>>> "spam" + "eggs"
'spameggs'
>>> "Spam" + "And" + "Eggs"
'SpamAndEggs'
>>> 3 * "spam"
'spamspamspam'
>>> "spam" * 5
'spamspamspamspamspam'
>>> (3 * "spam") + ("eggs" * 5)
'spamspamspameggseggseggseggseggs'



www.umbc.edu

Length of a String
• To get the length of a string, use len()

>>> title = "CMSC 201"
>>> len(title)
8
>>> len("Help I'm trapped in here!")
24

• Why would we need the length of a string?



www.umbc.edu

String Operators in Python
Operator Meaning

+
*

STRING[#]
STRING[#:#]
len(STRING)

for VAR in STRING Iteration

Concatenation
Repetition
Indexing
Slicing
Length

We’ll cover this next class, when we learn for loops!



www.umbc.edu

Just a Bit More on Strings
• Python has many, many ways to interact with 

strings, and we will cover them in detail soon
• For now, here are two very useful functions:

s.lower() – copy of s in all lowercase letters
s.upper() – copy of s in all uppercase letters

• Why would we need to use these?
– Remember, Python is case-sensitive!



www.umbc.edu

String Processing Examples



www.umbc.edu

Example: Creating Usernames
• Our rules for creating a username:

– First initial, first 7 characters of last name (lowercase)

# get user’s first and last names
first = input("Please enter your first name: ")
last = input("Please enter your last name:  ")

# concatenate first initial with 7 chars of last name
uname = first[0].lower() + last[:7].lower()
print("Your username is: ", uname)

Why is this 7?



www.umbc.edu

Example: Creating Usernames
>>> first = input("Please enter your first name: ")
Please enter your first name: Donna
>>> last  = input("Please enter your last name:  ")
Please enter your last name:  Rostenkowski

>>> uname = first[0] + last[:7]
>>> print("Your username is: ", uname)
Your username is DRostenk

>>> uname = first[0].lower() + last[:7].lower()
>>> print("Your username is: ", uname)
Your username is drostenk

Usernames must be lowercase!



www.umbc.edu

Example: Creating Usernames
>>> first = input("Please enter your first name: ")
Please enter your first name: Barack
>>> last  = input("Please enter your last name:  ")
Please enter your last name:  Obama

>>> uname = first[0].lower() + last[:7].lower()
>>> print("Your username is: ", uname)
Your username is bobama

• What would happen if we did last[7]?
– IndexError – but why does last[:7] work?



www.umbc.edu

Example: Printing the Months
• Given an integer (from 1 to 12) print the 

three letter abbreviation for that month

• Start by storing all the names in one big string:
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

• Use the number of the month to get the right 
“slice” of the months string



www.umbc.edu

Example: Printing the Months
• Let’s figure out the position for each month name:

months = "JanFebMarAprMayJunJulAugSepOctNovDec"
0123456789     5         5         5

Month Jan Feb Mar Apr May Jun
Num 1 2 3 4 5 6
Pos

Month Jul Aug Sep Oct Nov Dec
Num 7 8 9 10 11 12
Pos 18 21 24 27 30 33

0 3 6 9 12 15



www.umbc.edu

Example: Printing the Months
• Notice a pattern?

• To get the position, subtract 1 from the 
month’s number and multiply by 3
pos = (num-1) * 3

• Use it to get the month name from the string

Month Jan Feb Mar Apr
Num 1 2 3 4
Pos 0 3 6 9



www.umbc.edu

Example: Printing the Months
def main():

months = "JanFebMarAprMayJunJulAugSepOctNovDec"

n = int(input("Enter a month number (1-12): "))

# compute starting position of month n in months
pos = (n-1) * 3

# grab the appropriate slice from months
monthAbbrev = months[pos:pos+3]

# print the result    
print ("The month abbreviation is", monthAbbrev)

main()



www.umbc.edu

Example: Printing the Months
bash-4.1$ python months.py
Enter a month number (1-12): 1
The month abbreviation is Jan

bash-4.1$ python months.py
Enter a month number (1-12): 12
The month abbreviation is Dec

bash-4.1$ python months.py
Enter a month number (1-12): 100
The month abbreviation is

What 
happened?
months[297:300]

There’s nothing 
there in the string!



www.umbc.edu

Announcements
• Your Lab 4 is meeting normally this week!

– Make sure you attend your correct section

• Homework 3 is out
– Due by Thursday (Sept 24th) at 8:59:59 PM

• Homeworks are on Blackboard
– Weekly Agendas are also on Blackboard


	CMSC201� Computer Science I for Majors��Lecture 07 – Strings and Lists
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	About eval()
	Previous Uses of eval()
	The Problem with eval()
	The Problem with eval()
	What to Do Instead?
	Fixing the Temperature Converter
	Introduction to Lists
	Exercise: Average Three Numbers
	Using Lists
	Using Lists: Individual Variables
	Numbering in Lists
	Properties of a List
	List Syntax
	List Example: Grocery List
	List Example: Grocery List
	Grocery List Code
	Grocery List Demonstration
	List Example: Grocery List
	Strings
	The String Data Type
	String Examples
	Getting Strings as Input
	Accessing Individual Characters
	Syntax of Accessing Characters
	Example String
	Example String
	Substrings and Slicing
	Substrings
	Slicing Syntax
	Slicing Examples
	Specifics of Slicing
	More Slicing Examples
	Forming New Strings - Concatenation
	Forming New Strings - Repetition
	Practice: Spam and Eggs
	Length of a String
	String Operators in Python
	Just a Bit More on Strings
	String Processing Examples
	Example: Creating Usernames
	Example: Creating Usernames
	Example: Creating Usernames
	Example: Printing the Months
	Example: Printing the Months
	Example: Printing the Months
	Example: Printing the Months
	Example: Printing the Months
	Announcements

